

Cascade LF

Next-Generation Landfill Gas Upgrading

Higher Performance at a Lower Cost

Designed to achieve maximum methane recovery with minimum capital expenditure.

Proven, reliable and established technology elements integrated in patent-pending process.

Modular system design that is configurable and adapts to rapidly changing inlet gas flow and composition.

Cascade LF Flow Range

Typical Flows (scfm)	Typical Flows (Nm³/h)	Typical nitrogen levels
1,100-1,550	1,750-2,500	up to 16%
2,200-3,100*	3,500-5,000*	

Please contact us to size your system. Modular packages available.

Upgrading Technology Elements

Membrane Separation

Featuring permeate sweep technology for near-complete CO₂ removal at very high methane recovery.

Catalytic Deoxygenation

Patent-pending integrated process eliminates O₂ using a simple design and avoids a dedicated dryer.

Equilibrium Pressure Swing Adsorption

With CO_2 and O_2 pre-removed, high methane recovery achieved as only minimal N_2 needs to be removed to meet product gas specification.

Performance trend depends on O_2 level and product gas requirements.

^{*}Higher flow rates can be accommodated with multiple trains.

How Cascade LF works

- 1. Raw landfill gas passes through activated carbon pre-treatment removing Hydrogen Sulfide (H₂S). For higher H₂S and flow applications, optional Cascade H₂S (regenerative bulk H₂S removal) is available for lower OPEX.
- 2. Subsequent pre-treatment removes VOCs and Siloxanes using formulated activated carbon. For high levels of contaminants, a proprietary regenerative temperature swing adsorption (TSA) module is used.
- 3. Pre-treated gas is compressed, dewatered and temperature-controlled.
- 4. A patent-pending integrated upgrading process using membrane separation with permeate sweep and catalytic deoxygenation effectively eliminates CO₂ and O₂ with no need for a dedicated dryer. Elimination of CO₂, O₂ and H₂O creates the conditions for optimal subsequent N₂ removal. The separated CO₂ stream can be sequestered or used for other value-add purposes. At lower O₂ levels, catalytic deoxygenation is not required.
- 5. In the final upgrading step, only enough N₂ is removed using a proprietary equilibrium pressure swing adsorption (PSA) module to meet the final biomethane / RNG product specification.

The Greenlane Advantage

Solving the industry's most challenging problems for over 35 years with more than 355 systems supplied into 28 countries.

- + 24/7/365 expert technical support
- Remote monitoring and management
- + Priority spare parts incl. warehousing/logistics
- Proprietary software and equipment upgrades
- Commissioning, training & performance optimization
- Service contract options

Contact us

For North America: salesna@greenlanerenewables.com

© 2025 Greenlane Renewables Inc. All rights reserved